ISSN: 2181-4027 SJIF: 4.995

ОПЕРАТИВНОЕ ИНФОРМИРОВАНИЕ ЭКИПАЖЕЙ ВОЗДУШНЫХ СУДОВ ОБ ОПАСНЫХ МЕТЕОЯВЛЕНИЯХ В РАЙОНАХ АРКТИЧЕСКИХ ПОСАДОЧНЫХ ПЛОЩАДОК

OPERATIONAL NOTIFYING AIRCRAFT CREW ABOUT DANGEROUS METEOROLOGICAL PHENOMENA IN THE ZONES OF ARCTIC LANDINGSITES

Boltayev Samandar

Студент второго курса Ташкентского государственного транспортного университета

Ibragimov Rasul

Научный руководитель, старший преподаватель

Аннотация. Цель данной статьи состоит в исследовании и анализе методов оперативного информирования экипажей воздушных судов о возникновении опасных метеорологических явлений в районах арктических посадочных площадок. Арктические регионы представляют особые условия для авиации, так как там наблюдаются экстремальные погодные условия, которые могут представлять угрозу для безопасности полетов.

В работе проводится анализ существующих систем информирования и прогнозирования погоды в арктических регионах и рассматриваются возможности их применения для оперативного информирования экипажей о возможных опасностях. Особое внимание уделяется разработке новых методов оперативного информирования, учитывающих специфику арктического климата и географии.

В ходе исследования авторы анализируют различные источники информации о погоде, включая метеорологические станции на посадочных площадках, спутниковые данные, радары и другие датчики. Также рассматриваются возможности использования современных информационных технологий, таких как системы автоматического определения и передачи метеоданных.

Результаты исследования позволяют сделать выводы о необходимости усовершенствования систем оперативного информирования экипажей о опасных метеоявлениях в арктических регионах. Авторы предлагают ряд рекомендаций по разработке новых методов и технологий, которые позволят повысить

эффективность и надежность оперативного информирования, а также обеспечить безопасность полетов в условиях арктического климата.

Статья будет полезна для специалистов в области авиационной метеорологии, оперативного информирования и безопасности полетов, а также для исследователей, занимающихся проблемами арктической авиации.

Ключевые слова: опасные метеорологические явления, зондирование атмосферы, измеритель профиля температуры, метеостанция, посадочные площадки, обледенение, информационное обслуживание в полете.

Abstract. The purpose of this article is to study and analyze methods for promptly informing aircraft crews about the occurrence of dangerous meteorological phenomena in the areas of Arctic landing sites. The Arctic regions present special conditions for aviation, as they experience extreme weather conditions that can pose a threat to flight safety.

The paper analyzes the existing systems for informing and forecasting weather in the Arctic regions and considers the possibilities of their use for promptly informing crews about possible dangers. Particular attention is paid to the development of new methods of operational information, taking into account the specifics of the Arctic climate and geography.

During the study, the authors analyze various sources of weather information, including meteorological stations at the landing sites, satellite data, radars and other sensors. The possibilities of using modern information technologies, such as automatic detection and transmission of meteorological data, are also considered.

The results of the study allow us to draw conclusions about the need to improve the systems for promptly informing crews about dangerous weather events in the Arctic regions. The authors offer a number of recommendations for the development of new methods and technologies that will improve the efficiency and reliability of operational information, as well as ensure flight safety in the Arctic climate.

The article will be useful for specialists in the field of aviation meteorology, operational information and flight safety, as well as for researchers involved in the problems of Arctic aviation.

Key words: hazardous meteorological phenomena, atmospheric sounding, temperature profile meter, weather station, landing areas, icing, information service in flight.

ОПАСНЫЕ МЕТЕОЯВЛЕНИЯ В АРКТИЧЕСКОЙ ЗОНЕ

Климат Арктики — один из самых суровых на Земле. Зимой в Арктике усиленно дей- ствуют циклоны. Те, которые приходят со стороны Атлантики, несут частые ветры, обильные осадки и большую облачность, вследствие этого погода очень изменчива: под влиянием мощ- ного циклона возможно резкое потепление на 7–10 градусов. Неустойчивость ме- теорологической обстановки

выражается в резком изменении направления и скорости ветра, понижении высоты облачности, быстром натекании тумана с моря на побережье. Это вызвано влиянием больших водных пространств, близостью теплых и холодных течений. Сильные вет- ры (до 30–40 м/с) зимой вызывают снежную пургу и поземку [1].

Эти природные факторы в своей совокупности создают сложные, порой экстремальные климатические условия, которые приводят к возникновению опасных для авиации метеороло- гических явлений. Эти явления носят постоянный, труднопрогнозируемый и значительный по силе воздействия характер.

В районах самолетных и вертолетных посадочных площадок Арктики часто возникают опасные для авиации метеоявления [2, 3, 4]:

- сильный ветер у земли;
- сильная турбулентность;
- сдвиг ветра;
- град, смерч, шквал, ледяной дождь;
- низкая облачность;
- плохая видимость при тумане, снеге, метели, снежной пурге, поземке;
- обледенение;
- гололед;
- низкая температура воздуха.

В связи с особенностями природы, которые характерны для полярных районов, полеты в этом регионе осуществляются по особым правилам. Экипажи воздушных судов имеют специ- альную подготовку, однако резкая изменчивость погоды затрудняет выполнение полетов по маршрутам, и в особенности взлет и посадку, даже для опытных летчиков. Наиболее повторя- ющимися являются такие метеоявления, как низкая температура, сильный ветер, обледенение и туманы. Для самолетов и вертолетов, которые применяются на местных авиалиниях, такие ме- теоявления являются чувствительными, т. к. могут приводить к критическому снижению види- мости, значительным ветровым динамическому давлению и вибрации нагрузкам, воздушного Обледенение наиболее вероятно на высоте нулевой изотермы. Оно происходит преиму- щественно в переохлажденных капельно-жидких облаках и осадках при температуре воздуха отминус 3 до минус 12 °C и зависит от скорости полета воздушного судна. Около 90 % случаев обледенения возникает при воздушной скорости до 600 км/ч (максимальные интенсивность и повторяемость соответствуют интервалу скоростей 400–500 км/ч).

Наиболее характерно возникновение обледенения воздушных судов на этапе захода на посадку и при следовании по глиссаде. Это является наиболее

опасным событием, т. к. экипаж не всегда в состоянии принять меры по парированию возникающих ограничений. Для вертоле- тов обледенение представляет еще большую опасность. Особенно опасно нарастание льда на лопастях несущего винта вертолета, так как происходит очень быстро и неравномерно и приво- дит к резким колебаниям лопасти, которые передаются всей конструкции вертолета и вызываютбольшие вибрации ее частей.

Для прогнозирования опасных явлений, в том числе и обледенения, требуется информа- ция о профиле температуры. К тому же знание профиля температуры является крайне необхо- димым для регистрации температурных инверсий.

ИСПОЛЬЗОВАНИЕ ПРОФИЛЯ ТЕМПЕРАТУРЫ ВОЗДУХА ПРИ ВЫЯВЛЕНИИИ ПРОГНОЗИРОВАНИИ ОПАСНЫХ МЕТЕОЯВЛЕНИЙ

Одним из важных факторов, определяющих динамику развития атмосферных процессов в приземном слое, является профиль температуры. Профиль температуры, с одной стороны, определяет характер устойчивости атмосферы, что влияет на развитие процессов вертикального перемешивания и, как следствие, приводит к возникновению зон турбулентности, восходящих/нисходящих потоков.

Согласно оперативным испытаниям методов прогноза зон возможного обледенения воз- душных судов (ВС), выполненным в ГУ «Гидрометцентр России» в период с 1 апреля по 31 декабря 2009 года, максимальная вероятность обледенения ВС наблюдалась в сравнительно узких интервалах температуры и относительной влажности (от 5 до минус 10 °С и больше 85 % соответственно) [5], хотя обледенение ВС может наблюдаться в широком интервале отрица- тельных температур, но вне этих интервалов вероятность обледенения резко снижается. При этом зависимость от относительной влажности представляется более сильной: именно при от- носительной влажности RH больше 70 % наблюдалось 90,6 % всех случаев обледенения.

Исходя из данных о профиле температуры, выделяя диапазоны высот, в которых тем- пературы и влажность воздуха находятся в указанных выше пределах, можно прогнозировать возможность обледенения самолета в этих областях. Кроме этого, профиль температуры непосредственно влияет на тягу двигателя самолета и наличие температурной инверсии, явля- ется фактором, от которого напрямую зависит безопасность выполнения взлетно-посадочных операций.

Профиль температуры также оказывает влияние на развитие в приземном слое адиаба- тических процессов, которые связаны с образованием и

рассеиванием туманов, развитием об- лачности и водно-кристаллической структуры облаков, а также процессами обледенения воз- душных судов.

В Руководстве по сдвигу ветра на малых высотах⁴ описываются условия, когда сдвиг ниже струйного течения может быть значительным и пропорциональным мощности инверсии, при этом максимум ветра обычно наблюдается на высоте ниже 500 м, что соответствует высо- там этапов взлета и посадки. На рис. 1 показаны варианты наблюдаемых профилей температу- ры с инверсиями. Профили № 1 и 4 соответствуют случаю приподнятой инверсии с различной высотой слоя инверсии, профиль № 2 — приземной инверсии, а профиль № 3 — приподнятой ин- версии с приземной изотермией.

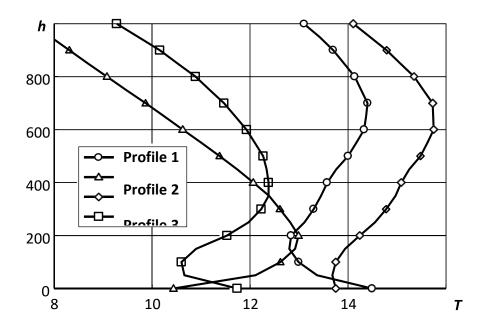
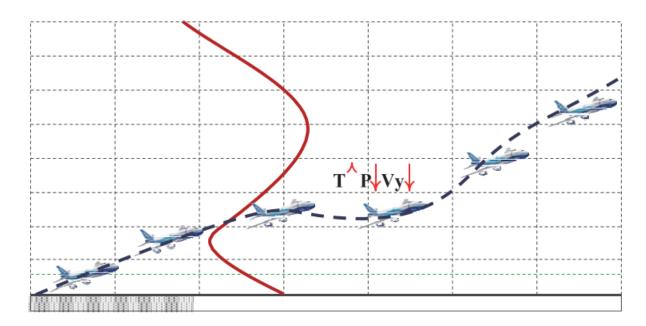
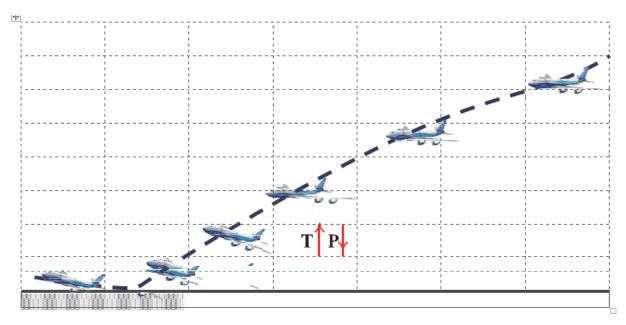


Рис. 1. Профили температуры с инверсиями


Fig. 1. Temperature profiles with inversions

Температурная инверсия представляет опасность для взлетающих самолетов, так как при входе воздушного судна в вышележащие слои более теплого воздуха снижается тяга двигате- лей, а скорость полета уменьшается. Поэтому для восстановления заданной скорости на той же высоте в условиях повышения температуры необходимо увеличивать мощность работы двигателей для обеспечения требуемых взлетных характеристик.


Следствием наличия инверсии является снижение вертикальной скорости набора высоты при увеличении температуры (рис. 2). Например, при увеличении температуры на 10° верти- кальная скорость уменьшается от 10 до 15 %.

С другой стороны, на выполнение посадки самолета может оказать существенное отри- цательное влияние наличие сверхадиабатического профиля

температуры в приземном слое (ко- гда градиент возрастания температуры с уменьшением высоты существенно выше, чем для адиабатически уравновешенной атмосферы). В этом случае при попадании самолета в область резкого повышения температуры на посадочной глиссаде приведет к непредвиденному значи- тельному падению тяги, следствием которого будет снижение высоты полета самолета, что мо- жет привести к катастрофическим последствиям в условиях малых высот (рис. 3).

Рис. 2. Влияние приподнятой инверсии на траекторию взлета самолета **Fig. 2.** The effect of the raised inversion on the trajectory of the aircraft takeoff

Рис. 3. Влияние сверхадиабатического профиля температуры на траекторию посадки самолета **Fig. 3.** Influence of super adiabatic temperature profile on the trajectory of the aircraft landing

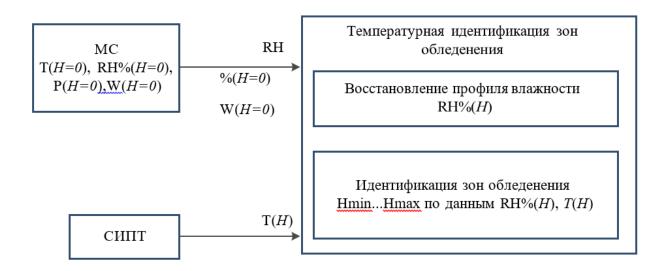
Таким образом, наличие сильных приземных инверсий температуры может оказывать существенное влияние на безопасность выполнения взлетно-посадочных операций. Возмож- ность измерения профиля температуры приземного слоя атмосферы обеспечивает повышение уровня надежности идентификации опасных метеорологических явлений в районе аэродрома.

ПРОГНОЗИРОВАНИЕ ВОЗНИКНОВЕНИЯ ЗОН ОБЛЕДЕНЕНИЯ, РАДИАЦИОННОГО ТУМАНА, СДВИГА ВЕТРА НА ОСНОВЕ ДАННЫХКОМПЛЕКСА НАЗЕМНОГО ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ТЕМПЕРАТУРНОЙ СТРАТИФИКАЦИИ

В районе посадочной площадки для обеспечения безопасных операций взлета и посадки необходимо иметь возможность получения достоверных данных о текущем и предстоящем в бли- жайшее время состоянии приземного слоя атмосферы. Для задач мониторинга таких опасных ме-теорологических явлений локального масштаба, как конвективная турбулентность, обледенение, туманы в районе посадочной площадки, необходимо применение комплекса аппаратуры наземного дистанционного зондирования температурной стратификации (КДЗТС). Такой комплекс должен обеспечить систему наблюдений и прогноза данными с высокой временной (до 5 минут) и высот- ной степенью разрешения. В состав комплекса должны входить метеостанция (МС), система изме- рения профиля температуры (СИПТ), устройство обработки данных (УОД).

MC за счет наличия в своем составе датчиков атмосферного давления, температуры воз- духа, влажности воздуха, направления и скорости ветра, видимости обеспечивает контроль сле- дующих метеорологических параметров:

- атмосферного давления;
- температуры воздуха;
- относительной влажности воздуха;
- скорости ветра;
- направления ветра;
- видимости текущей погоды.


Комплексирование данных контактного (МС) и дистанционного (СИПТ) мониторинга атмосферы повышает качество идентификации таких опасных метеоявлений, как зоны обледе- нения, и дает возможность адекватного прогноза условий возникновения радиационного тума- на, сдвига ветра и турбулентности в приземном слое.

Комплексирование данных СИПТ (SIPT) и МС (MS) решает несколько задач. Первая из них — обеспечение самокалибровки СИПТ. Для этого УОД принимает данные о температуре окружающей среды T_{loc} , измеренные МС.

Модуль обработки данных УОД производит сравне- ние температуры, которая поступает от МС и от СИПТ при дистанционном зондировании на высоте установки датчика температуры, $T_{\rm dist}(H=0)$. На основании разницы $T_{\rm loc}-T_{\rm dist}(H=0)$ модуль обработки данных УОД передает калибровочные коэффициенты в СИПТ, которая осу- ществляет корректировку весовых коэффициентов, используемых при вычислении профилятемпературы по данным об измеряемой яркостной температуре. Вторая задача — прогнозирова- ние зон обледенения по данным о профиле температуры. Как отмечалось ранее, вероятность обледенения воздушного судна максимальна в интервалах температуры от минус 5 до ми-нус $10\,^{\circ}$ С при относительной влажности более $85\,\%$.

Таким образом, для прогнозирования зон обледенения необходима информация о про- филе температуры, которая предоставляется СИПТ, и данные о профиле влажности, оценка ко- торого может быть получена на основании данных о влажности, которая поступает от датчика влажности МС.

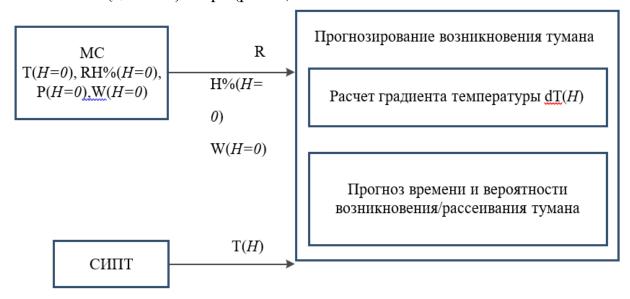

По измеренной величине относительной влажности RH_{loc} модуль прогнозирования зон обледенения УОПД выполняет восстановление профиля влажности на основании эмпирических зависимостей $RH_{loc}(H)$, а затем на основании измеренного профиля температуры $T_{dist}(H)$ и $RH_{loc}(H)$ определяет диапазон высот, в которых выполняются критерии зон обледенения (рис. 4).

Рис. 4. Комплексирование данных МС и СИПТ для идентификации зон обледенения **Fig. 4.** Complexation of MS and SIPT data for identification of icing zones

Решение задачи прогнозирования радиационных туманов также возможно за счет ком- плексирования данных МС и СИПТ. Условия возникновения радиационного тумана определя- ются совокупностью критериев значения градиента температуры, влажности и скорости ветра.

Радиационные туманы образуются над сушей и над районами сплошных льдов как след- ствие выхолаживания подстилающей поверхности путем излучения. Возникновение радиаци- онных туманов происходит при ясном небе и небольшом (до 2 м/с) ветре (рис. 5).

Рис. 5. Комплексирование данных МС и СИПТ для прогнозирования условий возникновения тумана **Fig. 5.** Complexation of MS and SIPT data for fog conditions prediction

В табл. 1 приведен перечень опасных для авиации метеоявлений, которые позволит вы-явить указанный выше комплект оборудования.

Таблица 1

Table 1

Перечень опасных для авиации метеоявлений

The list of dangerous weather phenomena for aviation

Тип ОМЯ	Воздействие на ВС	Возможность обнаружения, прогнозирования
Конвективная турбулентность	Болтанка, конструктивные повреждения ВС	возможно
Струйные течения низкогоуровня	Возможны трудности при взлете и призем-лении	возможно
Сильное обледенение	Ухудшение аэродинамических характери-стик ВС. Возрастание веса и неравномерность цен-тровки. Ухудшение обзора. Проблемы с выпуском/уборкой шасси	возможно
Град	Повреждение обшивки самолета, лопастейпропеллера и турбин, скольжение на ВПП	возможно

	1-	
Осадки	Снижение видимости, попадание воды в	возможно
	ка-бину, отсек двигателя,	
	асимметричное тор- можение,	
	выкатывание за пределы ВПП	
Твердые осадки	Снижение видимости.	возможно
	Ухудшение аэродинамических	
	характери-стик ВС.	
	Скопление в гондоле двигателя.	
	Ухудшение торможения.	
	Затенение огней ВПП	
Туман	Сильное снижение видимости	возможно
•	Создание сложных условий для посадки	
Туман Дымка Мгла Метель	Снижает видимость, дает ложное	возможно
	представ- ление о горизонтальной	
	видимости на аэро- дроме (может	
	достигать больших площадей в этом	
	случае представляет опасность, также	
	опасно в горной местности)	
Внезапное временное усиление	Сдвиг ветра, вызывающий трудности при	возможно
ветра	взлете и посадке	

СПОСОБЫ ПЕРЕДАЧИ НА БОРТ ВОЗДУШНОГО СУДНА ИНФОРМАЦИИО МЕТЕОРОЛОГИЧЕСКОЙ ОБСТАНОВКЕ

В РАЙОНЕ ПОСАДОЧНОЙ ПЛОЩАДКИ

В настоящее время в связи с развитием вычислительной техники, улучшением ее харак- теристик, таких как скорость вычисления, снижение массогабаритных характеристик, появи- лась возможность широкий спектр программного обеспечения, устанавливаемого на портативные устройства. Интерфейс портативных вычислительных устройств на данный интегрировать/коммутировать момент позволяет широкий спектр разнообразных приборов между собой, что существенно расширяет возможности и способы решения разнообразных за дач. Развитие технологий связи привело к качественному росту пропускной способности кана- лов связи, что позволяет в короткие сроки передавать большой объем данных на удаленные портативные устройства.

Для передачи данных о метеорологической обстановке в районе посадочной площадки наиболее целесообразно опираться на существующую технологию сервиса информационного обслуживания в полете — FIS (Flight information services), который способен обеспечить регу- лярный доступ к обновляемой метеорологической (МЕТ) информации. Данная технология поз- воляет в зависимости от способа доведения информации осуществлять адресную в контрактномрежиме (FIS-C) или широковещательную доставку сообщений (FIS-B)⁵.

информации FIS-В использует односторонний Система передачи вещательный протокол. Он является «односторонним» в том смысле, что информация передается только от сервера к принимающему воздушному судну без необходимости для этого судна требовать эту информа- цию от сервера и подтверждать ее получение. Это типичный «безадресный» способ в том смысле, что информация, предоставляемая сервером, не адресуется конкретному летательному аппарату, а передается для полезного использования любому соответственно оборудованному аппарату, который может оказаться в зоне покрытия. Эти характеристики определяют вещательный прото-кол, хорошо пригодный для большинства летательных аппаратов в зоне приема. К тому же про-стота этого протокола ведет к снижению стоимости как бортовой авионики, так и наземной ин- фраструктуры. Предоставление полетной информации FIS-В рекомендательного характера ДЛЯ пилотов позволит осведомленность о полетных условиях. Данная информация не будет носить характер команд и будет направлена на безопасное проведение полетных операций в соответствии с существующими правилами. Используя эту информацию, экипажи получат воз-можность заранее прогнозировать свои действия в условиях сложной метеорологической обста-новки. Технология FIS-В обеспечивает автоматическое поддержание актуальной метеорологиче-ской информации, поскольку данные FIS автоматически удаляются при получении новой версии либо когда истекло время актуальности этих данных. Таким образом, гарантированно снижается информационная нагрузка на экипаж по обработке неактуальной информации.

Технология FIS-В включает в себя три взаимосвязанных элемента:

- 1) наземные компоненты, предназначенные для сбора, обработки и хранения информа- ции AIS и MET;
- 2) телекоммуникационные компоненты, предназначенные для передачи на земле и прие- ма на борту ВС цифровых данных (линия передачи данных «земля борт»);
- 3) бортовые компоненты, предназначенные для хранения, обработки, представления ин- формации AIS и МЕТ бортовым приложениям и экипажу.

Универсальность технологии позволяет организовывать транспортировку данных раз- личных типов, укладывающихся в канальные ограничения максимальных размеров блоков.

Для передачи данных по технологии FIS-В сможет использоваться аппаратура автомати- ческого зависимого наблюдения вещательного типа (АЗН-В), которая является основой буду- щей системы организации воздушного движения, строящейся на принципах CNS/ATM с широ- ким использованием технологий спутниковой навигации, цифровой связи и наблюдения [8].

ИКАО разработаны рекомендации по совершенствованию каналов связи. Предусмотрен поэтапный переход к использованию более современных методов передачи данных. Такими яв- ляются режимы передачи данных в ОВЧ-диапазоне 1090ES и VDL-4. Использование для реали- зации АЗН-В двух технологий в стандарте ИКАО (1090ES/VDL4) предоставляет максимальное возможное разделение технологий по классам ВП и районам полетов. Каналы передачи данных 1090ES предназначены для пользователей верхнего воздушного пространства класса А на вы сотах более 8100 м и аэродромного воздушного пространства класса С на высотах до 4200 м и класса G в районах интенсивной авиационной деятельности. ЛПД VDL-4 является универсальной и обеспечивает не только работу АЗН-В («Out» и «In»), но и ряд других функций в радиовещательномрежиме типа TIS-B, FIS-B, A-SMGCS, DGNSS.

В рамках реализации «Программы внедрения средств вещательного автоматического за- висимого наблюдения в Российской Федерации (2011–2020 годы)» в 2016 году с положитель- ными результатами реализован пилотный проект в Ямало-Ненецком автономном округе «Ямал-АЗН». Для организации каналов связи использовались комплекты отечественного оборудова- ния, состоящие из наземных станций АЗН-В VDL-4, бортового и мобильного оборудования. В рамках этого проекта ведутся работы по практическому применению технологии АЗН-В специ- алистами АО «Газпром». На ряде вертолетов установлены бортовые станции АЗН-В VDL-4, имеется практический опыт использования наземного сегмента.

Таким образом, становится очевидным, что в Арктической зоне для повышения осве- домленности пилотов о полетных условиях в районе посадочных площадок целесообразно оснастить их КДЗТС. Для передачи информации на борт воздушного судна использовать эле- менты технологии FIS-В, базирующейся на ЛПД АЗН-В VDL-4. Это позволит в режиме, близ- ком к реальному времени, вести мониторинг метеорологической обстановки и передачу на борт воздушного судна информации об актуальной метеорологической обстановке.

ЗАКЛЮЧЕНИЕ

Роль и место местных авиалиний в Арктике с каждым годом растет. В целях оперативно- го информирования экипажей воздушных судов о фактической погоде в районе посадочной площадки необходимо вести регулярные метеорологические наблюдения, сбор и анализ метео- рологических данных. Для повышения достоверности этих сведений данные наблюдения необ- ходимо вести непрерывно. С целью исключения человеческого фактора, а также в связи

с труд- ностями в обеспечении непрерывного пребывания людей в районах арктических посадочных площадок необходимо максимально автоматизировать процессы сбора, обработки и предостав- ления экипажам воздушных судов метеорологической информации о фактической погоде в районе посадочной площадки. Современные способы дистанционного зондирования атмосферы в сочетании с комплексным подходом К обработке данных позволяют заблаговременно выявить предпосылки возникновения таких опасных для авиации метеоявлений, как обледенение и ра- диационные туманы. Данные о направлении и скорости ветра на малых высотах, а также ин- формация о состоянии метеообразований позволят дать дополнительные данные об опасных метеоявлениях в районе посадочной площадки. Для повышения достоверности и оправдывае- мости прогнозов необходимо расширять сеть полярных станций, средствами производить их оснашение автоматизированными наблюдения. При формировании требований метеорологического метеоаппаратуре, размещаемой в Арктике, необходимо особое внимание уделять ее устойчивости к сложным метеорологическим условиям и возможности функционировать в энергосберегающем режиме. Современные средства передачи данных позволяют создавать надежные каналы связи для доставки оперативной метеоинформации на борт воздушного суд- на. Наиболее целесообразно использовать для этих целей принятую в ИКАО технологию FIS-В и линии связи стандартов 1090 ES и VDL-4. В перспективе представляется целесообразным рассмотреть возможность дистанционной активации функции передачи метеоинформации при подлете воздушного судна к посадочной площадке по каналу «борт – земля», а также дистанци онному включению и выключению наземного оборудования, в частности посадочных вертолетной площадки. При интеграции метеооборудования со средствами связи типа «Гонец», Globalstar, Inmarsat возможность прогнозирования метеоявлений не только в Арктических рай- онах, но и по всему миру возрастет многократно, т. к. данные наблюдений можно будет обрабо-тать на мощных вычислительных средствах, применить для расчетов современные прогности- ческие модели. Экипажи воздушных судов получат дополнительную метеоинформацию, и за счет этого возрастет их ситуационная осведомленность. Таким образом, оперативное предо- ставление метеоинформации в автоматическом режиме позволит значительно повысить без- опасность совершения взлетно-посадочных операций в Арктической зоне.

СПИСОК ЛИТЕРАТУРЫ

1. Шерстюков Б.Г. Климатические условия Арктики и новые подходы к

- прогнозу из- менения климата // Арктика и Север. 2016. № 24. С. 39–67.
- **2. Баранов А.М.** Авиационная метеорология / Н.И. Мазурин, С.В. Солонин, И.А. Янковский. Л.: Гидрометеоиздат, 1966. 281 с.
- 3. **Акселевич В.И., Мазуров Г.И., Хайруллин К.Ш.** Гидрометеорологические опас- ности Арктики и методика их мониторинга // Ученые записки Забайкальского государственного университета. Сер. Физика, математика, техника, технология. 2017. Т. 12, № 4. С. 29–37.
- **4. Мазуров Г.И., Нестерук В.Н.** Метеорологические условия и полеты вертолетов. СПб.: Гидрометеоиздат, 1992. 254 с.
- **5. Шакина Н.П.** О результатах испытания метода прогноза зон возможного обледене- ния воздушных судов / Е.Н. Скриптунова, А.Р. Иванова, И.А. Горлач // Информационный сбор- ник No. 37. Результаты испытания новых и усовершенствованных технологий, моделей и мето- дов гидрометеорологических прогнозов. М.; Обнинск: ИГ-СОЦИН, 2010. С. 142—153.
- **6. Болелов** Э.**А.** Комплексная обработка метеоинформации в аэродромных мобильных комплексах метеолокации и зондирования атмосферы / Ю.Н. Кораблев, Н.А. Баранов, С.С. Демин, А.А. Ещенко // Научный сборник ГосНИИ ГА. 2018. № 20(331). С. 82–92.
- 7. **Баранов Н.А., Турчак Л.И.** Оценка риска обледенения воздушных судов по данным температурного зондирования атмосферы // Материалы XX Юбилейной Международной кон- ференции по вычислительной механике и современным прикладным системам (ВМСППС'2017)2017. М.: МАИ, 2017. С. 732–734.
- **8. Бочкарев В.В., Кравцов В.Ф., Крыжановский Г.А.** Концепция и системы CNS/ATM в гражданской авиации. М.: Академкнига, 2003. 415 с.